Generation and Reactions of Polymer-bound Nitrile Sulphides

Roy M. Mortier,b R. Michael Paton,*a and Ian Stobiea

^a*Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K.* **^b***lmperial Chemical Industries PL C, Organics Division, P. 0. Box 42, Hexagon House, Blackle y, Manchester M9 3DA, U. K.*

Copolymers of 5-isopropenyl- and 5-vinyl-I ,3,4-oxathiazol-2-ones with methyl methacrylate or styrene undergo thermal decarboxylation at 135-140 °C forming polymer-bound nitrile sulphides, which may be trapped as their 1,3-dipolar cycloadducts with dimethyl acetylenedicarboxylate or ethyl cyanoformate; in the absence of a dipolarophile the oxathiazolone units are converted into nitriles.

The 1,3-dipolar cycloaddition reactions of nitrile oxides **(1)** find widespread use in heterocyclic synthesis,¹ and to a more limited extent for the formation² and modification³ of polymers. In contrast much less attention has **been** paid to the corresponding nitrile sulphides **(2),** and examination of their chemistry has *so* far concentrated on developing methods for

their generation and exploring the scope of their reactions. 4 We now report the formation and cycloaddition reactions of some polymer-bound nitrile sulphides.

While nitrile sulphides can be generated from a variety of sources the most generally applicable route involves thermal decarboxylation of 1,3,4-oxathiazol-2-ones (3). The 5-isopropenyl and 5-vinyl compounds, **(3a)** and **(3b),** which are available6 by treatment of methacrylamide and acrylamide respectively with chlorocarbonylsulphenyl chloride, have recently been shown⁶ to copolymerise with methyl methacrylate (MMA) and styrene. The products **(4)** incorporate both monomers together with a trace of nitrile units, the latter arising from partial decomposition⁷ of the oxathiazolones during the polymerisation process.

The terpolymer **(4a)** (1.0 g) comprising units of **(3a)** $(x =$ 39%), methacrylonitrile $(y = 3\%)$, and MMA $(z = 58\%)$ was heated for 6 h at 135-140 °C with dimethyl acetylenedicarboxylate (DMAD) (2.7 g, giving a *5* : **1** molar ratio of DMAD to oxathiazolone units in the polymer) in xylene (25 ml).

a; $R^1 = R^2 = Me$, $R^3 = CO_2Me$ **b**; $R^1 = H$, $R^2 = Me$, $R^3 = Co_2Me$
 c; $R^1 = Me$, $R^2 = H$, $R^3 = Ph$
 d; $R^1 = R^2 = H$, $R^3 = Ph$

Removal of the solvent and excess of the dipolarophile by distillation under reduced pressure and purification of the residue by precipitation $(\times 3)$ from chloroform into hexane afforded a pale yellow solid (0.85 g). The product was identified from its analytical and spectroscopic properties as the terpolymer **(5a), containing units of isothiazole** $(x = 17\%)$ **, methacry**lonitrile $(y = 16\%)$, and MMA $(z = 67\%)$. The presence of isothiazole units is evident from the 13 C n.m.r. spectrum (Figure 1). The oxathiazolone absorptions at $176-173$ (C-2) and $167-162$ p.p.m. (C-5) in the starting material are replaced by peaks at 174-172, 165.6, 159.0, 157-155, and 133.5 p.p.m. These are assigned to C-3, $CO₂Me$, $CO₂Me$, C-5, and C-4 respectively of the **isothiazole-4,5-dicarboxylate** units by comparison with the 3-alkyl analogue *(6c)* (174.5, 164.2, 159.4, 155.4, and 131.5 p.p.m.), which was selected as a model compound. A broad peak at δ 4.0 in the ¹H n.m.r. spectrum provides supporting evidence. During the course of the reaction the intensity of the infrared absorption at 2220 cm^{-1} increased, suggesting that some of the oxathiazolones had been converted into nitriles.

Treatment of **(4a)** with ethyl cyanoformate (ECF) afforded the 1,2,4-thiadiazole copolymer (7a; $x = 20$, $y = 16$, $z = 64\%$), the structure of the product being established by ^{13}C and ^{1}H n.m.r. spectroscopy by comparison with **(8c).** Similar results were obtained for the vinyl analogue (4b; $x = 11$, $y = 5$, $z =$

Figure 1. ¹³C N.m.r. spectra in the range 100—190 p.p.m. of (a) oxathiazolone-methacrylonitrile-MMA terpolymer (4a), (b) isothiazole-methacrylonitrile-MMA terpolymer (5a) formed by (7)
 $R^3 = CO_2Me$
 $R^3 = CO_2Me$
 $R^4 = CO_2Me$
 $R^5 = CO_2Me$
 $R^6 = CO_2Me$
 $R^6 = CO_2Me$
 $R^6 = CO_2Me$
 $R^7 = CO_2Me$
 $R^8 = CO_2Me$
 $R^8 = CO_2Me$
 $R^9 = CO_2Me$
 $R^8 = CO_2Me$
 $R^9 = CO_2Me$
 $R^9 = CO_2Me$
 $R^8 = CO_2Me$
 $R^9 = CO_2Me$
 $R^9 = CO_2Me$
 $R^9 = CO_2Me$
 with MMA. The peaks marked **X** in (b) and (d) are assigned to isothiazole units by comparison with **(6c)** (see text).

84%), when **(5b**; $x = 10$, $y = 3$, $z = 87\%$) and **(7b**; $x = 5$, $y = 13$, $z = 82\%$ were formed with **DMAD** and **ECF** respectively. Likewise the styrene copolymers $(4c; x = 35, y =$ 5, $z = 60\%$) and **(4d**; $x = 33$, $y = 3$, $z = 64\%$) afforded **(5c**; $x = 22, y = 17, z = 61\%$ and **(5d**; $x = 17, y = 17, z = 66\%$) with **DMAD**, and **(7c**; $x = 23$, $y = 21$, $z = 56\%$) and **(7d**; $x =$ 13, $y = 21$, $z = 66\%$ with ECF.

In the absence of a dipolarophile the oxathiazolones are converted into nitriles $(\delta_0 126 - 123 \text{ p.p.m.}; \nu_{\text{max}} 2220 \text{ cm}^{-1});$ $e.g.$ **(4a**; $x = 39, y = 3, z = 58\%$) yielded **(4a**; $x = 8, y = 27,$ $z = 65\%$). These results are consistent with decarboxylation of the oxathiazolone to afford a polymer-bound nitrile sulphide, which either fragments to nitrile and sulphur or undergoes 1,3-dipolar cycloaddition with the dipolarophile.

A complementary approach to isothiazole- and 1,2,4 thiadiazole-containing polymers involves 1,3-dipolar cycloaddition of α -alkenylnitrile sulphides, generated from the corresponding oxathiazolones,⁵ and subsequent copolymerisation of the resulting cycloadducts with **MMA** or styrene. For example, a mixture of **(6a)** (1.0 mmol), **MMA,** (10 mmol), and azoisobutyronitrile (25 mg) was heated in refluxing methyl ethyl ketone for 5 h. Evaporation of the solvent and purification of the product by precipitation $(\times 3)$ from chloroform into methanol afforded a white solid (30% yield). **13C** N.m.r. spectroscopy (Figure 1d) and elemental analysis demonstrated

the presence of isothiazole (12%) and MMA (88%) units. In these cases nitriles are not produced, as shown by the absence of the characteristic peaks at δ_c 126-123 p.p.m. and v_{max} 2220 cm-l.

The reactions of the polymeric oxathiazolones closely parallel those of their monomeric analogues, suggesting **that** a variety of polymer-bound heterocycles incorporating the **C=N-S** fragment may be accessible by this means.

Received, 3rd June 1983; Corn. 716

References

- **1 C. Grundmann and P. Grunanger, 'The Nitrile Oxides,' Springer-Verlag, West Berlin and Heidelberg, 1971, ch. 5.**
- **2 A. L. Landis,** N. **Bilow,** R. **H. Boschan, and** R. **E. Lawrence,** *Am. Chem. Soc., Div. Polym. Chem. Prepr.,* **1974, 15, 533.**
- **3 R. M. Paton, I. Stobie, and** R. **M. Mortier,** *J. Polym. Sci., Polym. Lett. Ed.,* **1982, 20, 573.**
- **⁴A. M. Damas,** R. **0. Gould, M. M. Harding,** R. **M. Paton, J. F. Ross, and J. Crosby,** *J. Chem. Soc., Perkin Trans.* **1, 1981, 2991, and references therein.**
- **5 R. M. Paton, I. Stobie, and** R. **M. Mortier,** *Phosphorus Sulphur,* **1983, 15, 137.**
- **6 R. M. Paton, I. Stobie, and** R. **M. Mortier,** *J. Polym. Sci., Polym. Lett. Ed.,* **1983, 21, 145.**
- **7** R. **K. Howe and J. E. Franz,** *J. Org. Chem.,* **1974,39,962.**